Since f is arbitranily taken with f<G, we obtain $\mu_{o}(\mathbf{G}) \leq \sum_{j=1}^{\infty} \mu_{o}(\mathbf{G}_{j})$ Hence $\mu(E) \leq \mu_{o}(G) \leq \sum_{j=1}^{\Sigma} \mu_{o}(G_{j})$ $\leq \sum_{j=1}^{\infty} \left(\mu(E_j) + \frac{\xi}{z^j} \right)$ $= \left(\sum_{j=1}^{\infty} \mu(E_j)\right) + \varepsilon$ Lettrè ∑→0 gives $\mu(E) \leq \sum_{j=1}^{\infty} \mu(E_j).$

Step 2.
$$\mu$$
 is a Borel measure.
Equivalently, we need to show that
all open sets are μ -measurable.
Let $U \subset X$ be open. We need to prove
 $\mu(C) \ge \mu(C \cap U) + \mu(C \setminus U)$, $\Psi(C \setminus Z)$.
By the definition of μ , it is enough to prove
 \star) $\mu(G) \ge \mu(G \cap U) + \mu(G \setminus U)$, Ψ open G
(because if this is true, then $\Psi \ge >0$, pick open G=C
Such that $\mu(C) \ge \mu(G \cap U) + \mu(G \setminus U) - \Sigma$
 $\ge \mu(C \cap U) + \mu(C \setminus U) - \Sigma$.

To prove (*), we may assume
$$\mu(G) < \infty$$
.
Let $\xi > 0$, and pick $\varphi < G \cap \cup$ such that
 $\Lambda(\varphi) \ge \mu_0 (G \cap \cup) - \varepsilon$.
Let $K = supp(\varphi)$. Pick $\Psi < G \setminus K$.
Since $supp(\Psi)$ and K are disjoint,
 $g + \Psi < G$.
Hence
 $\mu(G) = \mu_0(G) \ge \Lambda(\varphi + \Psi)$
 $= \Lambda(\varphi) + \Lambda(\Psi)$
 $\ge \mu(G \cap \cup) - \varepsilon + \Lambda(\Psi)$.
Recall that $\Psi < G \setminus K$ is an bitnily taken,
we obtain
 $\mu(G) \ge \mu(G \cap \cup) - \varepsilon + \mu(G \setminus K)$

 $> \mu(G \cap U) - \varepsilon + \mu(G \setminus U)$ $(si'n \otimes G \setminus k > G \setminus U).$ Lettry 2→0 gives $\mu(G) \ge \mu(G \cap U) + \mu(G \setminus U).$ Step3. Mis finite on compact sets. We shall prove $\mu(K) = \inf \{ \Lambda(f) : K < f \}$ for all compact sets K, where K < f means $f \in C_c(X)$, O≤f≤lon X and f=lon K.

We first show $\mu(K) \leq \inf \{ \Lambda(f) : K < f \}$ Let $f \in C_{c}(X)$ such that K < f. For 26(0,1), define $G_{a} = \{ x \in X : f(x) > d \}.$ Then Ga is open and Ga > K. Let 9 < Ga. Then $\varphi < \frac{f}{d}$ on G_d Hence $\varphi \in \frac{f}{\lambda}$ on X. It follows that $\wedge(\varphi) \leq \wedge(\frac{f}{d}) = \frac{1}{d} \wedge(f)$ (here we used the positivety of Λ) Hence $\mu(G_a) \leq \frac{1}{a} \wedge (f).$

In particular $\mu(K) \leq \mu(G_a) \leq \frac{1}{\alpha} \wedge (f).$ Lettry d/1 gives $\mu(K) \leq \Lambda(f)$. This showes µ(K) ≤ inf { A(f) = K < f }. To show the other direction, UE>0, we can find open G > K such that $\mu(\kappa) \geq \mu(\epsilon) - \epsilon = \mu(\epsilon) - \epsilon$ By Urysohn's lemma, I f E Cc(X) such that K < f < G. Hence $\mu(K) \geq \mu(G) - \varepsilon$ $> \Lambda(f) - 2$. $\geq \inf \{ \Lambda(q) : K < q \} - \epsilon$

Letting
$$\Sigma \rightarrow 0$$
 gives the desired inequality,
Step 4. $\Lambda(f) = \int f d\mu$, $\forall f \in C_c(X)$.
Actually we only need to prove
 $(**) \quad \Lambda(f) \leq \int f d\mu$, $\forall f \in C_c(X)$.
(because the other direction follows by replacing
 f by $-f$ in the above inequality)
Let $f \in C_c(X)$. Then $f(X) \subset [a,b]$
for some $a, b \in IR$.
Let $\Sigma > 0$. Pick
 $y_0 < a < y_1 < y_2 < \dots < y_n = b$
such that $y_{j+1} - y_j < \Sigma$.

Let
$$K = supp(f)$$
, Let
 $E_j = f^{-1}(Y_{j-1}, Y_j] \cap K, j=1,..., n$
Then E_j are disjoint, measurable,
and $\bigcup_{j=1}^{n} E_j = K$.
Since K is compact, $\mu(K) < \infty$ so are
 $\mu(E_j)$.
Next we pick open $G_j \supset E_j$ such that
 $\bigoplus_{j=1}^{n} G_j = \{x: \frac{Y_j}{1-\xi} \in f(x) < Y_j + \xi\}$
 $(2) \quad \mu(E_j) \geq \mu(G_j) - \frac{\xi}{n}$.
Nother $K = \bigcup_{j=1}^{n} E_j = \bigcup_{j=1}^{n} G_j$.

Hence
$$\exists \varphi_{j} < G_{j}$$
 with $\sum_{j=1}^{n} \varphi_{j} = 1$ on K.
Hence $f = \sum_{j} f \cdot \varphi_{j}$ on X
Hence $\bigwedge (f) = \sum_{j=1}^{n} \wedge (f \varphi_{j})$
 $\leq \sum_{j=1}^{n} \wedge (f \varphi_{j})$
 $\leq \sum_{j=1}^{n} \wedge ((y_{j} + \xi) \varphi_{j})$
 $= \sum_{j=1}^{n} (y_{j} + \xi) \wedge (\varphi_{j}) - [\alpha| \sum_{j=1}^{n} \wedge (\varphi_{j})]$
 $= \sum_{j=1}^{n} ([\alpha| + y_{j} + \xi) \wedge (\varphi_{j}) - [\alpha| \sum_{j=1}^{n} \wedge (\varphi_{j})]$
 $\leq \sum_{j=1}^{n} ([\alpha| + y_{j} + \xi) \mu (G_{j}) - [\alpha| \sum_{j=1}^{n} \wedge (\varphi_{j})]$
 $\leq \sum_{j=1}^{n} ([\alpha| + y_{j} + \xi) \cdot (\mu (E_{j}) + \xi)]$
 $\leq \sum_{j=1}^{n} ([\alpha| + y_{j-1} + \xi) \cdot (\mu (E_{j}) + \xi)]$

$$\leq \sum_{j=1}^{n} y_{j-1} \mu(E_j) + [\alpha] \cdot \left(\sum_{j=1}^{n} \mu(E_j) - \sum_{j=1}^{n} \Lambda(P_j)\right)$$

+ $O(\Sigma)$.
$$\leq \int f d\mu + O(\Sigma).$$

(since $\sum_{j=1}^{n} y_{j-1} \chi_{E_j} \leq \int f d\mu$)
Here we used the facts that $\sum_{j=1}^{n} \mu(E_j) = \mu(K)$
and $\mu(K) \leq \Lambda(\sum_{j=1}^{n} P_j)$
(since $K < \sum_{j=1}^{n} P_j$,
we use Step 3).